Graded Left Modular Lattices Are Supersolvable
نویسنده
چکیده
Abstract. We provide a direct proof that a finite graded lattice with a maximal chain of left modular elements is supersolvable. This result was first established via a detour through EL-labellings in [MT] by combining results of McNamara [Mc] and Liu [Li]. As part of our proof, we show that the maximum graded quotient of the free product of a chain and a single-element lattice is finite and distributive.
منابع مشابه
Extending Characterizations of Lattice Supersolvability
It is known that a graded lattice of rank n is supersolvable if and only if it has an EL-labelling where the labels along any maximal chain are exactly the numbers 1, 2, . . . , n without repetition. These labellings are called Sn EL-labellings, and having such a labelling is also equivalent to possessing a maximal chain of left modular elements. In the case of an ungraded lattice, there is a n...
متن کاملPoset edge-labellings and left modularity
It is known that a graded lattice of rank n is supersolvable if and only if it has an EL-labelling where the labels along any maximal chain are exactly the numbers 1, 2, . . . , n without repetition. These labellings are called Sn EL-labellings, and having such a labelling is also equivalent to possessing a maximal chain of left modular elements. In the case of an ungraded lattice, there is a n...
متن کاملFrankl's Conjecture for Subgroup Lattices
We show that the subgroup lattice of any finite group satisfies Frankl’s UnionClosed Conjecture. We show the same for all lattices with a modular coatom, a family which includes all supersolvable and dually semimodular lattices. A common technical result used to prove both may be of some independent interest.
متن کاملA Generalization of Semimodular Supersolvable Lattices
Stanley [18] introduced the notion of a supersolvable lattice, L, in part to combinatorially explain the factorization of its characteristic polynomial over the integers when L is also semimodular. He did this by showing that the roots of the polynomial count certain sets of atoms of the lattice. In the present work we define an object called an atom decision tree. The class of semimodular latt...
متن کاملBinary Supersolvable Matroids and Modular Constructions
Let Jt be the class of binary matroids without a Fano plane as a submatroid. We show that every supersolvable matroid in JÍ is graphic, corresponding to a chordal graph. Then we characterize the case that the modular join of two matroids is supersolvable. This is used to study modular flats and modular joins of binary supersolvable matroids. We decompose supersolvable matroids in JH as modular ...
متن کامل